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1. Introduction

The pure spinor formalism [1] is a super-Poincaré covariant description of the superstring

which significantly simplifies multiloop amplitude computations and which allows quanti-

zation in Ramond-Ramond backgrounds. However, because of the non-conventional form

of the BRST operator in the pure spinor formalism, the relation of this formalism to the

Green-Schwarz (GS) and Ramond-Neveu-Schwarz (RNS) formalisms for the superstring

was mysterious. Furthermore, it was not known how to describe the GSO(−) sector of the

superstring using the pure spinor formalism.

In this paper, these mysterious features of the formalism will be explained by adding

a pair of non-minimal fields and performing a similarity transformation such that the
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pure spinor BRST operator is expressed as a conventional-looking BRST operator. This

conventional-looking BRST operator involves the Virasoro constraint and twelve fermionic

constraints, where eleven of these fermionic constraints are associated to the eleven in-

dependent components of the original bosonic pure spinor ghost. The twelfth fermionic

constraint and the Virasoro constraint are associated to the new pair of non-minimal fields,

(β̃, γ̃) and (b, c), which have opposite statistics and carry conformal weight (2,−1). Al-

though this conventional form of the BRST operator is not manifestly Lorentz invariant,

it will be useful for constructing GSO(−) vertex operators and for relating the pure spinor

formalism to the GS and RNS formalisms.

The new non-minimal fields, (β̃, γ̃) and (b, c), decouple from vertex operators and scat-

tering amplitudes involving GSO(+) states, however, they play a crucial role in defining

vertex operators and scattering amplitudes involving GSO(−) states. Just as Ramond ver-

tex operators in the RNS formalism [2] depend non-trivially on the (β, γ) ghosts, GSO(−)

vertex operators in the pure spinor formalism will depend non-trivially on the (β̃, γ̃) ghosts.

And just as scattering amplitudes involving Ramond states in the RNS formalism require

picture-changing operators to cancel the picture of the Ramond vertex operators, scatter-

ing amplitudes involving GSO(−) states in the pure spinor formalism will require picture-

changing operators to cancel the picture of the GSO(−) vertex operators.

Note that the new non-minimal fields (β̃, γ̃, b, c) are unrelated to the non-minimal

fields (λα, w
α, rα, s

α) which were introduced in the “Dolbeault” description of the pure

spinor formalism [3, 4] [5]. In this paper, the Dolbeault description will not be discussed

although it would be interesting to consider including both (β̃, γ̃, b, c) and (λα, w
α, rα, s

α)

non-minimal fields in the pure spinor formalism. Such a Dolbeault description might be

useful for writing the conventional-looking BRST operator in a manifestly Lorentz-invariant

form.

After expressing the pure spinor BRST operator as a conventional-looking BRST op-

erator with a Virasoro constraint and twelve fermionic constraints, it is relatively straight-

forward to relate the pure spinor formalism with the GS and RNS formalisms for the

superstring. In the GS formalism, the fermionic constraint dα = 0 contains 8 first-class

components and 8 second-class components. After breaking manifest Lorentz invariance

down to SO(8) and then to U(4), the 8 second-class constraints can be converted into 4

first-class constraints. The resulting BRST operator has 12 fermionic constraints and is

related by a field redefinition to the pure spinor BRST operator. Interestingly, this field

redefinition allows the manifest U(4) invariance to be enlarged to U(5).1

To relate the RNS formalism with the pure spinor formalism, one first twists the ten

spin-half RNS fermions ψm into five spin-zero fermions θa and five spin-one fermions pa

for a = 1 to 5.2 This twisting breaks SO(10) Lorentz invariance to U(5), and one can

parameterize the different choices of twisting by introducing SO(10)/U(5) bosonic pure

1Throughout this paper, we shall Wick-rotate the spacetime metric from SO(9, 1) to SO(10). All results

can be Wick-rotated back to Minkowski space, however, the group structure of the 25 U(5) generators is

more complicated in Minkowski space where it splits into 16 U(4) generators and 9 light-like boosts.
2A similar twisting procedure was used in several earlier papers by Baulieu and collaborators to relate

the RNS string to a topological string [6]. I thank Nikita Nekrasov for informing me of these papers.
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spinor variables. One then imposes the constraints that physical states are independent

of the 11 pure spinor variables, and the fermionic ghosts for these constraints are the

remaining 11 components of θα and pα. After adding these 11 constraints to the N=1

super-Virasoro constraints, the RNS BRST operator is mapped into the conventional form

of the pure spinor BRST operator where the spin −1 non-minimal field γ̃ is related to the

spin −1
2 RNS ghost γ as γ̃ = (γ)2.

It is interesting to note that a similar procedure of twisting fermions has been used

to embed the N = 0 bosonic string into an N = 1 string [7]. In the N = 0 → N = 1

embedding, the (b, c) ghosts are twisted from (2,−1) conformal weight to (3
2 ,−1

2) conformal

weight, and the N = 1 stress tensor is defined as G = b + jBRST where
∫
dz jBRST is the

BRST charge of the bosonic string. In fact, the inverse map of this embedding which takes

an N = 1 string into an N = 0 string is closely related to the map from the RNS formalism

to the pure spinor formalism. This is not surprising since the pure spinor formalism can

be interpreted as an N = 2 topological string [3, 8], which is a natural generalization of

N = 0 bosonic strings.

Note that this N = 1 → N = 0 inverse map from the RNS to the pure spinor

formalism is different from the N = 1 → N = 2 embedding that has been used to map

the RNS formalism into the hybrid formalism for the superstring [9]. For example, the

N = 1 → N = 2 embedding maps the RNS string into a critical ĉ = 2 N = 2 string

as opposed to a ĉ = 3 N = 2 topological string. Nevertheless, a certain version of the

N = 1 → N = 2 embedding will be shown at the end of this paper to closely resemble the

N = 1 → N = 0 embedding. This version might eventually be useful for relating the pure

spinor and hybrid formalisms for the superstring.

In section 2 of this paper, the pure spinor formalism is briefly reviewed and a pair of

non-minimal fields, (b, c) and (β̃, γ̃), are introduced. After performing a similarity trans-

formation, the pure spinor BRST operator is expressed as a conventional-looking BRST

operator with 12 fermionic constraints.

In section 3, GSO(−) vertex operators are constructed with the help of the non-

minimal fields. These GSO(−) vertex operators carry nonzero picture and, after defining

picture-changing operators, it is shown how to compute scattering amplitudes using these

vertex operators.

In section 4, the conventional-looking form of the pure spinor BRST operator is ob-

tained from gauge-fixing the GS superstring. In performing this gauge-fixing, the 8 first-

class and 8 second-class GS constraints are combined into 12 first-class constraints in a

manifestly U(5)-invariant manner.

In section 5, the RNS BRST operator is mapped to the pure spinor BRST operator

by twisting the ten spin-half RNS fermions using an SO(10)/U(5) pure spinor variable to

parameterize the different twistings. For states in the Neveu-Schwarz GSO(+) sector, it is

shown how to map the RNS and pure spinor vertex operators into each other.

In section 6, the map from the RNS formalism to the pure spinor formalism is inter-

preted as an inverse map of the N = 0 → N = 1 embedding of the bosonic string. This

inverse map may be useful for constructing generalizations of the pure spinor formalism.
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And in section 7, the approach of this paper will be compared with other approaches to

“explaining” the pure spinor formalism. One approach which is discussed in detail uses an

N = 1 → N = 2 embedding to map the RNS string into variables which closely resemble

those of the N = 1 → N = 0 embedding.

2. Conventional-looking pure spinor BRST operator

In this section, the pure spinor formalism will be briefly reviewed and the BRST operator

Q =
∫
dzλαdα will be related to a conventional-looking BRST operator involving the usual

(b, c) ghosts and Virasoro constraint, together with 12 fermionic constraints.

2.1 Brief review of pure spinor formalism

The pure spinor formalism [1] in a flat background is described by the free worldsheet

action

S =

∫
d2z

[
1

2
∂xm∂xm + pα∂θ

α + p̂bα∂θ̂
bα + wα∂λ

α + ŵbα∂λ̂
bα
]

(2.1)

where (xm, θα, θ̂bα, pα, p̂bα) are the Green-Schwarz-Siegel matter variables for m = 0 to 9 and

(α, α̂) = 1 to 16, (λα, wα) and (λ̂bα, ŵbα) are left and right-moving bosonic ghost variables

satisfying the pure spinor constraint

λΓmλ = λ̂Γmλ̂ = 0, (2.2)

and Γm
αβ and (Γm)αβ are 16× 16 symmetric matrices satisfying Γ

(m
αβ(Γn))βγ = 2δγ

αηmn. The

hatted spinor variables have the opposite/same chirality as the unhatted variables for the

Type IIA/IIB superstring, and throughout this paper, the hatted variables will be ignored.

Physical states are defined as states in the cohomology of the BRST operator

Q =

∫
dz λαdα (2.3)

where

dα = pα − 1

2
(Γmθ)α∂xm − 1

8
(θΓm∂θ)(Γmθ)α (2.4)

is the Green-Schwarz constraint. Since dα satisfies the OPE [10]

dα(y)dβ(z) → −(y − z)−1Γm
αβΠm (2.5)

where Πm = ∂xm + 1
2θΓm∂θ is the supersymmetric momentum, Q is nilpotent using the

constraint of (2.2).

For massless super-Yang-Mills states, the unintegrated and integrated vertex operators

are

V = λαAα(x, θ), (2.6)∫
dz U =

∫
dz[∂θαAα(x, θ) + ΠmAm(x, θ) + dαW

α(x, θ) +NmnF
mn(x, θ)] (2.7)

– 4 –
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where Nmn = 1
2(wΓmnλ) is the Lorentz current for the pure spinor variables, (Aα, Am) are

gauge superfields and (Wα, Fmn) are superfield-strengths for super-Yang-Mills. When the

super-Yang-Mills superfields are onshell, QV = 0 and QU = ∂V .

Tree-level N -point scattering amplitudes are computed by the correlation function

A = 〈〈V1V2V3

∫
dz4U4 . . .

∫
dzNUN 〉〉 (2.8)

using the measure factor

〈〈(λΓmθ)(λΓnθ)(λΓpθ)(θΓmnpθ)〉〉 = 1. (2.9)

Although this measure factor looks unusual, it can be derived from functional integra-

tion over the worldsheet fields after performing a BRST-invariant regularization [3].

The correlation function of (2.8) is easily computed using the free-field OPE’s coming

from the worldsheet action of (2.1) together with the OPE’s

Nmn(y)λα(z) → 1

2
(y − z)−1(Γmnλ)α, (2.10)

Nmn(y)Npq(z) → (y − z)−1(ηp[nNm]q − ηq[nNm]p) − 3(y − z)−2ηm[qηp]n. (2.11)

The manifestly covariant OPE’s of (2.10) can be derived by solving the pure spinor con-

straint λΓmλ = 0 in a U(5)-invariant manner. Under SU(5) × U(1), an SO(10) spinor

decomposes as λα → (λ+, λab, λ
a) where a = 1 to 5, λab = −λba, and (λ+, λab, λ

a) carries

U(1) charge (5
2 ,

1
2 ,−3

2). If λ+ is assumed to be nonzero, λΓmλ = 0 implies that

λa = −1

8
(λ+)−1ǫabcdeλbcλde (2.12)

so that λα has eleven independent components parameterized by λ+ and λab.

In terms of (λ+, λab) and their conjugate momenta (w+, w
ab), the pure spinor contri-

bution to the stress tensor and Lorentz currents is [11]

Tpure =
1

2
wab∂λab + w+∂λ

+ +
3

2
∂2(log λ+), (2.13)

NU(1) =
1√
5

(
1

4
λabw

ab +
5

2
λ+w+ − 5

4
∂(log λ+)

)
, (2.14)

Nab = λ+wab, (2.15)

N b
a = λacw

bc − 1

5
δb
aλcdw

cd,

Nab = (λ+)−1

(
2∂λab −

5

2
λab∂(log λ+) + λacλbdw

cd − 1

2
λabλcdw

cd

)
− w+λab, (2.16)

where the SO(10) Lorentz currents Nmn have been decomposed into (NU(1), N
b
a, N

ab, Nab)

which transform as (1, 24, 10, 10) representations of SU(5). Note that the “improvement”

term 3
2∂

2(log λ+) is necessary in Tpure so that Nmn are primary fields with respect to Tpure.

It is also convenient to define the ghost-current

J = w+λ
+ +

1

2
wabλab +

7

2
∂(log λ+) (2.17)
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which has no poles with Nmn and which satisfies J(y)λα(z) → (y − z)−1λα.

Although there is no fundamental b ghost in the pure spinor formalism, one can con-

struct a composite operator Gα satisfying {Q,Gα} = λαT where

T = −1

2
∂xm∂xm − pα∂θ

α + Tpure (2.18)

is the stress tensor with zero central charge.3 This composite operator will play an impor-

tant role in this paper and is defined as [11]

Gα =
1

2
Πm(Γmd)

α − 1

4
Nmn(Γmn∂θ)

α − 1

4
J∂θα − 1

4
∂2θα (2.19)

where Nmn and J are defined in (2.14) and (2.17).

2.2 Non-minimal fields and similarity transformation

The first step to constructing a conventional-looking BRST operator from Q =
∫
dzλαdα

is to add the term
∫
dzγ̃b to the pure spinor BRST operator so that

Q =

∫
dz(λαdα + γ̃b) (2.20)

where (β̃, γ̃) are bosonic and (b, c) are fermionic non-minimal fields with the worldsheet

action
∫
d2z(β̃∂γ̃ + b∂c). These non-minimal fields do not contribute to the cohomology

because of the topological term
∫
dzγ̃b in Q.

The second step is to perform the similarity transformation Q′ = eRQe−R where

R =

∮
dz

[
− c

λ+
G+ + c∂cβ̃

]
(2.21)

and G+ is the component of Gα in (2.19) with 5
2 U(1) charge. Using {Q,G+} = λ+T , it is

easy to verify that after performing the similarity transformation,

Q′ = eRQe−R =

∫
dz

[
cT̃ − γ̃

λ+
G+ + λαdα + γ̃b+ bc∂c

]
(2.22)

where

T̃ = −1

2
∂xm∂xm − pα∂θ

α + Tpure + β̃∂γ̃ + ∂(β̃γ̃) (2.23)

is a stress tensor with central charge c = 26.

Although Q′ is not invariant under Lorentz transformations generated by Mab which

transform λ+ and G+ into λab and Gab, one can use the relation [3]

λ[αGβ] =

[ ∫
dz λγdγ , H

αβ

]
(2.24)

3It is interesting to point out that in a curved target-space background, Gα will in general not be

holomorphic. Nevertheless, one can argue that ∂Gα is BRST-trivial, which appears to be sufficient for

computing scattering amplitudes where Gα plays the role of the b ghost.
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where

Hαβ =
1

192
Γαβ

mnp(dΓ
mnpd+ 24NmnΠp) (2.25)

to show that [
Q′, Mab +

∫
dz

γ̃

(λ+)2
H+

ab

]
= 0 (2.26)

where H+
ab is the component of Hαβ with α = + and β = ab. Furthermore, one can

verify that the Lorentz algebra generated by M ′
ab ≡ Mab +

∫
dz eγ

(λ+)2
H+

ab with the other

Lorentz generators closes up to a BRST-trivial operator. So under Lorentz transformations

generated by M ′
mn = [MU(1),M

ab,Ma
b ,Mab +

∫
dz eγ

(λ+)2
Hab], Q

′-closed states transform

covariantly up to a BRST-trivial transformation. Note that one could have defined the

Lorentz generators as M ′
mn = eRMmne

−R where R is defined in (2.21), but such a definition

would not preserve the property that all poles when λ+ → 0 have residues which are

proportional to γ̃. As will be discussed later, this property is useful since terms proportional

to γ̃ will decouple from scattering amplitudes.

Finally, it will be convenient to define

γ̃+ = − γ̃

λ+
, (2.27)

so that

Q′ =

∫
dz[cT̃ + γ̃+G

+ + λαdα − λ+γ̃+b+ bc∂c]. (2.28)

If (γ̃+, λ
+, λab) are interpreted as 12 independent bosonic ghosts, Q′ resembles a stan-

dard BRST operator constructed from 12 fermionic constraints and the Virasoro constraint.

Since (γ̃+, β̃
+) are not Lorentz scalars, they will appear in the Lorentz generators. In

terms of (γ̃+, β̃
+), (w+, λ

+) and (wab, λab), the SO(10) Lorentz currents of (2.14) are

NU(1) =
1√
5

(
1

4
λabw

ab +
5

2
λ+w+ − 5

2
γ̃+β̃

+

)
, (2.29)

Nab = λ+wab, N b
a = λacw

bc − 1

5
δb
aλcdw

cd, (2.30)

Nab = (λ+)−1

(
2∂λab+λabγ̃+β̃

+−4λab∂(log λ+) + λacλbdw
cd− 1

2
λabλcdw

cd

)
−w+λab.

(2.31)

The contribution of these bosonic ghosts to the stress tensor is

T̃pure = w+∂λ
+ +

1

2
wab∂λab + β̃+∂γ̃+ + ∂(β̃+γ̃+), (2.32)

which can be verified to have no triple poles with Nmn. And the ghost current of (2.17) is

J = w+λ
+ +

1

2
wab∂λab − β̃+γ̃+ + 4∂(log λ+). (2.33)

Remarkably, after including the (b, c) and (β̃+, γ̃+) non-minimal fields, T̃pure no longer

requires improvement terms involving ∂2(log λ+). This may resolve some of the puzzles

discussed in [12] which are related to possible anomalies in the formalism. Furthermore,

as will be shown in the following section, the introduction of these non-minimal fields

appears to be necessary for the construction of GSO(−) vertex operators in the pure

spinor formalism.
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3. GSO(−) states in the pure spinor formalism

In this section, it will be shown how to construct vertex operators for GSO(−) states

and, after defining picture-changing operators, it will be shown how to compute scattering

amplitudes involving these states.

3.1 GSO(+) vertex operators

Before constructing GSO(−) vertex operators, it will be useful to explain how to construct

GSO(+) vertex operators using the new BRST operator Q′ of (2.28). For GSO(+) states,

one method to construct vertex operators V ′ which are BRST-invariant with respect to Q′

is to simply define V ′ = eRV e−R where R is defined in (2.21) and V is the original pure

spinor vertex operator which is BRST-invariant with respect to Q =
∫
dzλαdα.

However, a more useful definition is

V ′ = cU + V + γ̃+(G+
0 U) +

cγ̃+

λ+
(G+

−1G
+
0 U) (3.1)

where V and
∫
dzU are the original pure spinor unintegrated and integrated vertex oper-

ators satisfying QV = 0 and QU = ∂V , G+
n signifes the pole of order (n + 2) with G+,

and V has been gauge-fixed to satisfy G+
n V = 0 for n ≥ 0. For example, for the massless

super-Yang-Mills vertex operator V and U of (2.6), the gauge-fixing condition G+
0 V = 0

implies that ∂m(γmD)+Aα = 0, which implies that ∂m∂mAα = ∂mAm = 0.

Note that V ′ of (3.1) is related to eRV e−R by the BRST-trivial transformation

V ′ = eRV e−R −Q′(
c

λ+
G+

0 U) (3.2)

where the relation

QG+
0 U = −G+

0 QU + λ+T0U = −G+
0 ∂V + λ+U = −∂(G+

0 V ) +G+
−1V + λ+U (3.3)

has been used. Although both (3.1) and eRV e−R have poles when λ+ → 0, the vertex

operator of (3.1) has the advantage that the residues of these poles are proportional to

γ̃+. Since the vertex operators are independent of β̃+, any term proportional to γ̃+ will

generically decouple from scattering amplitudes.

3.2 GSO(−) vertex operators

For GSO(−) states, it does not appear to be possible to construct vertex operators in

the original pure spinor formalism without the non-minimal (β̃+, γ̃+) fields [13] [14]. The

reason is that, just as Ramond vertex operators in the RNS formalism depend non-trivially

on the (β, γ) ghosts, the GSO(−) vertex operators in the pure spinor formalism will depend

non-trivially on the (β̃+, γ̃+) ghosts.

For example, the tachyon vertex operator in the pure spinor formalism will be

V ′ = c exp

[
− 1

2

(
3φ̃+ φ+ +

10∑

[ab]=1

φab − i
16∑

α=1

σα

)]
eikmxm

(3.4)

– 8 –
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where the (β̃+, γ̃+), (w+, λ
+) and (wab, λab) bosonic ghosts have been fermionized as

β̃+ = e−
eφ∂ξ̃+, γ̃+ = η̃+e

eφ, (3.5)

w+ = e−φ+

∂ξ+, λ+ = η+eφ
+

, (3.6)

wab = e−φab∂ξab, λab = ηabe
φab , (3.7)

and the (θα, pα) fields have been bosonized as

pα = e−iσα

, θα = eiσ
α

.

Since en
eφ carries conformal weight 1

2(−n2 − 3n), enφ+

and enφab

carry conformal weight
1
2(−n2 −n), and einσα carries conformal weight 1

2(n2 −n), one finds that V ′ of (3.4) carries

zero conformal weight when eikmxm

has 1
2 conformal weight as expected for the tachyon.

Furthermore, it is not difficult to show that Q′V ′ = 0.

Although only U(5) invariance is manifest, one can easily verify that (3.4) is a scalar

under Lorentz transformations generated by (2.29). It is interesting to note that bosonized

Ramond vertex operators in the RNS formalism also manifestly preserve only a U(5) sub-

group of the Lorentz group.

Other GSO(−) vertex operators can be constructed by taking OPE’s of the

tachyon vertex operator of (3.4) with the GSO(+) vertex operators of (3.1). Just as

(ψm, β, γ) have square-root cuts with Ramond vertex operators in the RNS formalism,

(θα, pα, λ
α, wα, β̃

+, γ̃+) have square-root cutes with GSO(−) vertex operators in the pure

spinor formalism. To be convinced that this construction of GSO(−) vertex operators is

correct, it will now be shown how to compute tree amplitudes using these GSO(−) vertex

operators.

3.3 Picture-changing operators

Because of the screening charges related to the conformal weights of the worldsheet fields,

the natural measure factor for tree amplitudes is

〈
c∂c∂2c (θ)16 exp

[
− 3φ̃− φ+ −

10∑

ab=1

φab

]〉
= 1. (3.8)

If one defines picture such that ξ and eφ carry picture +1 and η carries picture −1,

the measure factor of (3.8) carries picture (−3,−1,−1) with respect to the (γ̃+, λ
+, λab)

ghosts, the GSO(+) vertex operators of (3.1) carry picture (0, 0, 0), and the GSO(−) vertex

operators of (3.4) carry picture (−3
2 ,−1

2 ,−1
2).

To relate the measure factor of (3.8) to the usual pure spinor measure factor

〈〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉〉 = 1 (3.9)

which carries zero picture, one needs to introduce BRST-invariant picture-raising oper-

ators. As in the RNS formalism, the picture-raising operators are naturally defined by
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anticommuting the BRST operator with the ξ variable as

Z+ = {Q′, ξ+} = eφ
+

(d+ − γ̃+b) + c∂ξ+, (3.10)

Zab = {Q′, ξab} = eφ
ab

(
dab − 1

2
(λ+)−1ǫabcdeλcdde

)
+ c∂ξab,

Z̃+ = {Q′, ξ̃+} = e
eφ(G+ − λ+b) + c∂ξ̃+. (3.11)

By inserting products of these picture-raising operators, one finds that the measure

factors of (3.8) and (3.9) can be related as

Z c∂c∂2c (θ)16 e−3eφ−φ+−
P

ab φab

= (λγmθ)(λγnθ)(λγpθ)(θγmnpθ) + . . . (3.12)

where

Z = (Z̃+)3Z+

∏

ab

Zab (3.13)

= b∂b∂2b ǫα1...α16(λγm)α1
(λγn)α2

(λγp)α3
(γmnp)α4α5

dα6
. . . dα16

e3
eφ+φ++

P
ab φab

+ . . . ,

and . . . involves terms with fewer than three λ’s (and more c’s) and can be determined

from the requirement of BRST invariance with respect to Q′.

3.4 Scattering amplitudes

For tree amplitudes which involve only the GSO(+) vertex operators V ′ defined in (3.1),

the N -point tree amplitude prescription is

A =
N∏

r=4

∫
dzr〈〈Ur(zr)

3∏

s=1

V ′
s (ys)〉〉 =

N∏

r=4

∫
dzr〈〈b(zr)

N∏

s=1

V ′
s (ys)〉〉 (3.14)

where
∫
dzrb(zr) is the usual b ghost insertion coming from the Faddeev-Popov gauge-

fixing of the worldsheet action. Since there are no β̃+’s in this correlation function, the

only terms in V ′ of (3.1) which contribute are V ′ = cU+V and it is easy to verify that (3.14)

reproduces the original prescription of (2.8). It is interesting that, except for the different

measure factor, the prescription of (3.14) looks very similar to the Lee-Siegel prescription

of [15] and it would be nice to find a proof that the two prescriptions are equivalent.

But for tree amplitudes involving GSO(−) vertex operators, one needs to insert ad-

ditional picture-changing operators to absorb the (−3
2 ,−1

2 ,−1
2) picture of the GSO(−)

vertex operators of (3.4). This procedure is precisely analogous to RNS amplitudes in-

volving Ramond states where the number of picture-changing operators depends on the

number of Ramond vertex operators in the −1
2 picture.

For example, for tree amplitudes involving N GSO(+) states V ′
+ and 2M GSO(−)

states V ′
−, the tree amplitude prescription is

A =
N+2M∏

r=4

∫
dzr〈〈b(zr)ZM (u)

N∏

s=1

V ′
s+

2M∏

t=1

V ′
t−〉〉 (3.15)

=

N+2M∏

r=4

∫
dzr〈b(zr)ZM−1(u)

N∏

s=1

V ′
s+

2M∏

t=1

V ′
t−〉
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where the location of the picture-raising operators is arbitrary. So for tree amplitudes

involving two GSO(−) states and an arbitrary number of GSO(+) states, one can use the

natural measure factor of (3.8) without any picture-changing insertions.

For genus g amplitudes, the natural measure factor based on the screening charges is

〈
b3g−3(θ)16(p)16g exp

[
(g − 1)(3φ̃+ φ+ +

∑

ab

φab)

]〉
= 1. (3.16)

So one expects naively that the multiloop amplitude prescription for N GSO(+) states

and 2M GSO(−) states is

A =

3g−3∏

j=1

∫
dτj

N+2M∏

r=1

∫
dzr〈〈b(zr)b(µj)Z

M+g(u)
N∏

s=1

V ′
s+

2M∏

t=1

V ′
t−〉〉 (3.17)

where b(µj) is the b ghost associated with the jth Teichmuller parameter τj . When M = 0,

this prescription appears to be closely related to the multiloop prescription given in [16] for

the pure spinor formalism. However, a proof of equivalence of these multiloop prescriptions

will not be attempted here.

4. Equivalence to Green-Schwarz formalism

In this section, the BRST operator Q′ of (2.28) will be obtained by gauge-fixing the Green-

Schwarz superstring. But before discussing the superstring, it will be useful to first discuss

the Brink-Schwarz superparticle.

4.1 Brink-Schwarz superparticle

The N = 1 d = 10 Brink-Schwarz superparticle action, S = 1
2

∫
dτ e−1ΠmΠm, can be

written in first-order form as [17, 18]

S =

∫
dτ

(
Pm∂τx

m + pα∂τθ
α − 1

2
ePmP

m + fαdα

)
(4.1)

where Πm = ∂τx
m + 1

2θΓ
m∂τθ, dα = pα − 1

2P
m(Γmθ)α, and fα is a fermionic Lagrange

multiplier.

As is well-known, dα = 0 contains 8 first-class constraints and 8 second-class con-

straints, and the first-class constraints are generated by 8 of the 16 components of the

κ-symmetry generators Pm(Γmd)α. One can choose GA = 1
2(Γ+Γmd)APm to describe

these 8 first-class constraints where A = 1 to 8 is an SO(8) chiral spinor index, Ȧ = 1 to 8

is an SO(8) antichiral spinor index, J = 1 to 8 is an SO(8) vector index, and Γ± ≡ Γ0±Γ9.

Note that {GA, GB} = −1
2δ

ABP+PmPm.

Assuming that P+ is nonzero, one can use GA to gauge-fix (Γ+f)A = 0 and can use

the P 2 = 0 constraint to gauge-fix e = 0. In this gauge, the BRST operator is

Q = −1

2
cPmPm + γAG

A − 1

2
P+γAγAb (4.2)
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with the action

S =

∫
dτ [Pm∂τx

m + pα∂τθ
α + b∂τc+ βA∂τγA + f ȦdȦ]

where (βA, γA) are bosonic ghosts coming from the gauge-fixing of fA=0, and f ȦdȦ =

fα(Γ−Γ+d)α describe the remaining second-class constraints.

To complete the BRST quantization, one needs to express the 8 second-class constraints

dȦ = 0 in terms of 4 first-class constraints. This is done by first splitting the eight

components of γA as

γA = δ+A γ̃+ + (P+)−1λA (4.3)

where λA is a null SO(8) spinor satisfying λAλA = 0. More explicitly, one decomposes the

SO(8) spinor γA into U(4) components as γA → (γ+, γjk, γ−) where j = 1 to 4, and defines

λ+ ≡ λ− = P+γ−, λjk = P+γjk, (4.4)

λ+ = −1

8
(λ+)−1ǫjklmλjkλlm, (4.5)

γ̃+ = γ+ − (P+)−1λ+. (4.6)

In terms of γ̃+ and λA, the BRST operator and action of (4.2) are

Q = −1

2
cPmPm + γ̃+G

+ + (P+)−1λAG
A − γ̃+λ

+b (4.7)

and

S =

∫
dτ [Pm∂τx

m + pα∂τθ
α + b∂τc+ β̃+∂τ γ̃+ + wA∂τλ

A + f ȦdȦ]. (4.8)

One then defines the first-class constraints as

HJ = λΓ−ΓJd = λAσJ
AȦ
dȦ (4.9)

where σJ
AȦ

are the SO(8) Pauli matrices. Note that λAλA = 0 implies that only 4 of

the 8 components of HJ are independent. And since the components of HJ anticommute

with each other and with the BRST operator of (4.7), they can be used to replace the 8

second-class constraints dȦ = 0.

So one can replace (4.8) with the action

S =

∫
dτ [Pm∂τx

m + pα∂τθ
α + b∂τc+ β̃+∂τ γ̃+ + wA∂τλ

A + hJH
J ] (4.10)

where only four components of the Lagrange multipliers hJ are nonzero (e.g. choose h5 =

h6 = h7 = h8 = 0). Note that the action of (4.8) is recovered if one uses the first-class

constraints of (4.9) to gauge dȧ = 0, which produces no new propagating ghosts.4 However,

one can also use (4.9) to gauge hJ = 0, in which case the resulting BRST operator and

action are

Q = −1

2
cPmPm + γ̃+G

+ + (P+)−1λAG
A − γ̃+λ

+b+ γJH
J , (4.11)

S =

∫
dτ [Pm∂τx

m + pα∂τθ
α + b∂τc+ β̃+∂τ γ̃+ + wA∂τλ

A + βJ∂τγ
J ] (4.12)

4I thank Yuri Aisaka for discussions on this point.
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where γJ are bosonic ghosts with only four nonzero components. Finally, since GA =

P+dA+P JσAȦ
J dȦ, the BRST operator of (4.11) is equal to the superparticle BRST operator

in the pure spinor formalism,

Q = −1

2
cPmPm + γ̃+G

+ + λαdα − γ̃+λ
+b (4.13)

where λαdα = λAdA + λȦdȦ and λȦ is defined as

λȦ ≡ (γJ + PJ)σJ
AȦ
λA (4.14)

which has four independent components. Note that λȦλȦ = λAλA = λAσJ
AȦ
λȦ = 0, so λα

is a pure spinor with 11 independent components.

4.2 Green-Schwarz superstring

To extend these results from the Brink-Schwarz superparticle to the Green-Schwarz super-

string, first write the Green-Schwarz action in first-order form as [19, 10]

S =

∫
d2z

[
1

2
∂xm∂xm + pα∂θ

α + p̂bα∂θ̂
bα (4.15)

+fαdα + f̂ bαd̂bα − e

(
1

2
∂xm∂xm + pα∂θ

α

)
− ê

(
1

2
∂xm∂xm + p̂bα∂θ̂

bα
)]

(4.16)

where

dα = pα−
1

2
∂xm(Γmθ)α−

1

8
(θΓm∂θ)(Γmθ)α, (4.17)

d̂bα = p̂bα−
1

2
∂xm(Γmθ̂)bα−

1

8
(θ̂Γm∂θ̂)(Γmθ̂)bα,

fα and f̂ bα are fermionic Lagrange multipliers, e and ê are the off-diagonal components of

the worldsheet metric, and (α, α̂) are spinor indices of the opposite/same chirality for the

Type IIA/IIB superstring. In the following discussion, only the unhatted variables will be

gauge-fixed, however, one can gauge-fix the hatted variables in an identical manner.

As in the superparticle, dα contains 8 first-class and 8 second-class constraints. The

first-class constraints are generated by 8 of the 16 components of Πm(Γmd)α where Πm =

∂xm + 1
2θΓ

m∂θ is the supersymmetric momentum. Choosing

G̃A =
1

2
(Γ+Γmd)AΠm (4.18)

to describe the 8 independent first-class constraints, one follows the same steps as in the

superparticle and gauge-fixes (Γ+f)A = e = 0.

As shown in [10], G̃A satisfies the Poisson brackets

{G̃A(σ1), G̃
B(σ2)} = δ(σ1 − σ2)

[
∂θ(AG̃B) + δAB∂θCG̃C

+δABΠ+

(
− 1

2
ΠmΠm − dα∂θ

α

)
+

1

2
δABdȦ∂dȦ

]
. (4.19)
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So the BRST operator and action after gauge-fixing are

Q =

∫
dz

[
c

(
− 1

2
ΠmΠm − dα∂θ

α + β∂γ + ∂(βγ) − b∂c

)
− 1

2
Π+γAγAb+ γAG̃A (4.20)

−(γA∂θ
A)(γBβ

B) − 1

2
(γAγ

A)(βB∂θ
B)

]
,

S =

∫
d2z

[
1

2
∂xm∂xm + pα∂θ

α + b∂c+ βA∂γ
A + f ȦdȦ

]
, (4.21)

where the last term in (4.19) can be ignored since it is quadratic in the second-class con-

straints.

As in the superparticle, the 8 second-class constraints dȦ = 0 can be converted into

4 first-class constraints by writing γA = δ+A γ̃+ + (Π+)−1λA where λAλA = 0, and defining

the first-class constraints as

HJ = λAσJ
AȦ
dȦ (4.22)

which has only four independent components.

It is not difficult to verify that HJ anticommutes with HK and satisfies

{Q,HJ} = ∂(cHJ) + γ̃+H
K(ΓKΓJ∂θ)+ + (Π+)−1(λA∂θA)HJ , (4.23)

so HJ describe first-class constraints which can replace the 8 second-class constraints dȦ.

After gauge-fixing the Lagrange multiplier hJ = 0 as in the superparticle, the BRST

operator of (4.21) becomes

Q =

∫
dz

[
c

(
− 1

2
ΠmΠm − dα∂θ

α + wA∂λ
A + βJ∂λ

J + β̃+∂γ̃+ + ∂(β̃+γ̃+) − b∂c

)

−γ̃+λ
+b+ γ̃+G̃

+ + λAG̃
A + γJH

J + . . .

]
(4.24)

where . . . involves ghost-ghost-antighost terms multiplied by components of ∂θα. Finally,

after defining λȦ = (γJ + ΠJ)σJ
AȦ
λA as in the superparticle, one obtains the pure spinor

BRST operator of (2.28)

Q =

∫
dz(cT̃ + γ̃+G

+ + λαdα − γ̃+λ
+b+ bc∂c) (4.25)

where T̃ = −1
2∂x

m∂xm−pα∂θ
α + T̃pure, and G+ = G̃+− 1

4Nmn(Γmn∂θ)+− 1
4J∂θ

+− 1
4∂

2θ+

is defined as in (2.19). Although G+ − G̃+ can be determined by computing the ghost-

ghost-antighost terms in (4.24), G+ − G̃+ can also be indirectly determined by requiring

the nilpotence of Q.

5. Mapping RNS into the pure spinor formalism

In this section, the RNS BRST operator will be mapped into the pure spinor BRST operator

by a field redefinition which maps the RNS variables into Green-Schwarz-Siegel variables.

For states in the Neveu-Schwarz GSO(+) sector, the RNS and pure spinor vertex operators
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in the zero picture will then be mapped into each other. However, since Ramond states in

the RNS formalism and GSO(−) states in the pure spinor formalism do not have vertex

operators in the zero picture, there is no obvious way to map their vertex operators into

each other.

5.1 Twisting the RNS fields

The first step in performing the map from the RNS BRST operator to the pure spinor

BRST operator is to twist the ten spin-half RNS fermions ψm into five spin-zero fermions

ψ̃m and five spin-one fermions ψ̃m as [6]

ψm =
1

γ
ψ̃n

(λΓmΓn)+

2λ+
+ γψ̃n

(λΓnΓm)+

2λ+
(5.1)

where γ is the RNS bosonic ghost of −1
2 conformal weight, (λΓmΓn)+ is the compo-

nent of (λΓmΓn)α with 5
2 U(1) charge, and λα is a pure spinor which parameterizes the

SO(10)/U(5) different choices for twisting. Note that only 5 independent components of

ψ̃m and ψ̃m contribute to (5.1), and (5.1) can be inverted to imply that

ψ̃n(λΓmΓn)+ = γψn(λΓmΓn)+, ψ̃n(λΓnΓm)+ =
1

γ
ψn(λΓnΓm)+. (5.2)

Since the spin 3
2 bosonic antighost β has non-trivial OPE’s with ψ̃m and ψ̃m, it is

convenient to define new fields β̃ = ∂ξ̃e−
eφ and γ̃ = η̃e

eφ where

η̃ = e−
1

2
φλαΣα, ξ̃ = e

1

2
φ(λ+)−1Σ

+
, (5.3)

e
eφ = η∂ηe

5

2
φ(λ+)−1Σ

+
, e−

eφ = ξ∂ξe−
5

2
φλαΣα, (5.4)

and Σα and Σ
α

are anti-Weyl and Weyl spin fields of 5
8 conformal weight which are con-

structed in the usual manner from the ψm variables. The definitions of (5.3) are uniquely

determined by the requirements that [η̃, ξ̃, e
eφ, e−

eφ] have the same OPE’s as [η, ξ, eφ, e−φ]

with each other, that [η̃, ξ̃, e
eφ, e−

eφ] have no poles with ψ̃m and ψ̃m, and that η̃ has +1

conformal weight. Note that

γ̃ = η̃e
eφ = η∂ηe2φ = γ2 (5.5)

carries spin −1 and β̃ carries spin 2. So the twisting of (5.1) and (5.3) shifts the central

charge contribution of the (β, γ) ghosts from 11 to 26, which cancels the shift from 5 to

−10 in the central charge contribution of the twisted ψ̃’s.

If λα is treated as a worldsheet field, one needs to introduce a fermionic superpartner

for λα and add a topological term to the RNS BRST operator so that these new fields do

not contribute to the cohomology. The fermionic superpartner to λα will be called θ̃α for

reasons that will become clear, and will be defined to transform under BRST as

Qθ̃α = λα, Qλα = 0. (5.6)

Furthermore, because of the pure spinor constraint λΓmλ = 0, θ̃α will be required to

satisfy the fermionic constraint

θ̃αΓm
αβλ

β = 0. (5.7)
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It is easy to verify that the constraint of (5.7) eliminates five components of θ̃α, so

that θ̃α and λα each have eleven independent components.

To generate the BRST transformation of (5.6), one should add
∫
dzλαp̃α to the RNS

BRST operator so that

Q =

∫
dz[cTRNS − γ∂xmψm + bc∂c+ γ2b+ λαp̃α] (5.8)

where wα is the conjugate momenta to λα and p̃α is the conjugate momenta to θ̃α. Because

of the constraints λΓmλ = λΓmθ̃ = 0, wα and p̃α are defined up to the gauge transforma-

tions

δwα = ρm(Γmλ)α + Ωm(Γmθ̃)α, δp̃α = Ωm(Γmλ)α, (5.9)

where ρm and Ωm are arbitrary gauge parameters. So five of the sixteen parameters of

each of these conjugate momenta can be gauged away.

To construct super-Poincaré covariant Green-Schwarz-Siegel variables out of the RNS

variables, one can now combine the eleven components of θ̃α and p̃α with the five spin-zero

and spin-one components of ψ̃m and ψ̃m to define the unconstrained sixteen-component

spinors

θα = θ̃α + ψ̃m
(Γm)α+

2λ+
, pα = p̃α + ψ̃m(Γmλ)α. (5.10)

Note that (5.10) implies that ψm can be expressed in terms of pα and θα as

ψm = γ
(Γmp)+

2λ+
+

1

γ
(λΓmθ), (5.11)

and the OPE ψm(y)ψn(z) → (y − z)−1ηmn implies that pα(y)θβ(z) → (y − z)−1δβ
α.

When expressed in terms of pα and θα,

γ∂xmψm = (λΓmθ)∂x
m + γ̃

(Γmp)
+

2λ+
∂xm. (5.12)

And λΓmλ = 0 implies that λαpα = λαp̃α. So the BRST operator of (5.8) can be

written as

Q =

∫
dz

[
cTRNS + bc∂c+ λα(pα − (Γmθ)α∂xm) + γ̃

(
b− (Γmp)+

2λ+
∂xm

)]
(5.13)

where

TRNS = −1

2
∂xm∂xm + (γ̃)−1(θΓmλ)(θΓm∂λ) − (Γmp)+

2λ+
∂(θΓmλ) + β̃∂γ̃ + ∂(β̃γ̃). (5.14)

Finally, to put (5.14) into the standard form for a stress tensor and to covariantize

(Γmp)+ into (Γmd)+, one performs the similarity transformation Q→ eUeSQe−Se−U where

(up to possible errors in the coefficients)

S =

∫
dz c

[
(γ̃)−1(λΓmθ)(θΓm∂θ) + (λ+)−1

(
− 1

8
(Γmn∂θ)+(wΓmnλ) − 1

4
∂θ+(wλ)

)]
,

U =

∫
dz (16λ+)−1(Γmnλ)+∂xp(θΓ

mnpθ). (5.15)
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After performing this similarity transformation,

Q =

∫
dz

[
cT̃ + bc∂c+ λαdα + γ̃

(
b− G+

λ+

)]
= eR

[ ∫
dz (λαdα + γ̃b)

]
e−R (5.16)

where T̃ , G+, dα and R are defined as in section 2. So the RNS BRST operator has been

mapped into the pure spinor BRST operator of (2.22).

5.2 Neveu-Schwarz GSO(+) vertex operators

In this subsection, the Neveu-Schwarz GSO(+) vertex operators in the zero picture in the

RNS formalism will be mapped into the corresponding pure spinor vertex operators. How-

ever, since Ramond vertex operators in the RNS formalism and GSO(−) vertex operators

in the pure spinor formalism cannot be written in the zero picture, there is no obvious way

to relate the vertex operators for these states in the two formalisms. Note that the map

of (5.3) acts in a simple manner on operators in the zero picture, i.e. operators which can

be expressed directly in terms of γ and γ̃. However, the map acts in a complicated manner

on operators in nonzero picture which contain explicit φ or φ̃ dependence.

In the zero picture, unintegrated Neveu-Schwarz vertex operators in the RNS formalism

have the form

VRNS = γW + cG− 1

2

W (5.17)

where W is an N = 1 superconformal primary of weight 1
2 constructed from (xm, ψm)

and G− 1

2

W is the single pole of ψm∂x
m with W . After performing the field redefinition

of (5.11), VRNS is expressed in terms of the variables [xm, (λγmθ), (λ+)−1(γmp)+, γ̃, c].

And if the state is GSO(+), this operator contains integer powers of γ̃.

To map VRNS to a pure spinor vertex operator, one needs to perform the similar-

ity transformation V = e−ReUeSVRNSe
−Se−UeR where R, S and U are defined in (2.21)

and (5.15). Since

e−ReUeS
(
QRNS +

∫
dz λαpα

)
e−Se−UeR =

∫
dz(λαdα + γ̃b), (5.18)

V is in the pure spinor cohomology. But before claiming that V is a pure spinor vertex

operator, one needs to ensure it is independent of inverse powers of λ+ and γ̃. One can show

that any dependence on such inverse powers can be removed by adding a suitable BRST-

trivial operator, however, the form of this BRST-trivial operator may be complicated to

construct.

A more direct way to map the Neveu-Schwarz GSO(+) vertex operator of (5.17) into

the corresponding pure spinor vertex operator is to write theN = 1 superconformal primary

W of (5.17) in the form

W = ψmfm(xn,Mpq) (5.19)

whereMpq = ψpψq is the contribution of ψm to the RNS Lorentz current, and fm(xn,Mpq) is

a function of xn and Mpq and their worldsheet derivatives. Since GSO(+) superconformal

primaries have an odd number of ψ fields, it is always possible to write W in the form

of (5.19) for some choice of fm(xn,Mpq).
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The corresponding pure spinor vertex operator will then be defined as

V = (λγmθ)fm(x,M) +
∞∑

n=1

V2n+1 (5.20)

where

Mpq = Npq +
1

2
(pΓpqθ) (5.21)

and the terms in V2n+1 contain (2n + 1) more θ’s than p’s. Note that (2.10) implies that

Mpq of (5.21) has the same OPE’s as Mpq = ψpψq. To determine the terms in V2n+1, use

{
∫
dz λαdα, V } = 0 and {

∫
dz λαpα, (λγ

mθ)fm(x,M)} = 0 to imply that

{ ∫
dz λαpα, V2n+1

}
=

{
1

2

∫
dz λα∂xm(Γmθ)α, V2n−1

}
+

{
1

8

∫
dz λα(θΓm∂θ)(Γmθ)α, V2n−3

}
(5.22)

where V1 = (λγmθ)fm(x,M) and Vm = 0 for m < 0.

Finding solutions to (5.22) for V2n+1 would always be possible if
∫
dz λαpα had trivial

cohomology at +2 ghost number. Although in fact there are non-trivial elements at +2

ghost number in the cohomology of
∫
dz λαpα (e.g. the state (λΓmθ)(λΓnθ)(θΓmnpθ)), it

seems reasonable to conjecture that when W = ψmfm(x,M) is an N = 1 superconformal

primary, these non-trivial elements are not an obstacle to finding solutions for V2n+1 which

satisfy (5.22). So assuming this conjecture concerning
∫
dz λαpα cohomology at +2 ghost

number, there is a simple map from unintegrated Neveu-Schwarz GSO(+) vertex operators

in the RNS formalism to unintegrated vertex operators in the pure spinor formalism.

One can similarly map integrated Neveu-Schwarz GSO(+) vertex operators at zero

picture in the RNS formalism into the corresponding pure spinor vertex operators. If
∫
dz URNS =

∫
dz f(x,M) (5.23)

is the integrated vertex operator in the RNS formalism where Mmn = ψmψn, then

∫
dz U =

∫
dz

[
f(x,M) +

∞∑

n=1

U2n

]
(5.24)

is the integrated vertex operator in the pure spinor formalism where Mmn = Nmn +
1
2(pΓmnθ) and U2n contains 2n more θ’s than p’s. In this case, finding solutions to U2n is

related to the cohomology of
∫
dz λαpα at +1 ghost number. When

∫
dz URNS is N = 1

superconformally invariant, one expects that non-trivial elements in this cohomology do

not provide obstacles to solving for U2n.

The maps of (5.20) and (5.24) can easily be verified for the massless gluon vertex

operator where W = ψmam(x) and URNS = ∂xmam(x) + Mmn∂man(x). And since any

massive Neveu-Schwarz GSO(+) vertex operator can be obtained from the OPE’s of gluon

vertex operators, this map is indirectly verified also for massive states. Furthermore, since

there are no terms in these vertex operators with more p’s than θ’s, most of the terms
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V2n+1 and U2n in the pure spinor vertex operators will not contribute. So using arguments

similar to [20] one can verify that tree amplitudes involving Neveu-Schwarz GSO(+) states

coincide in the two formalisms. However, since loop amplitudes involve intermediate states

in the Ramond GSO(+) sector, it is not surprising that it is difficult to prove equivalence

of the RNS and pure spinor amplitude prescriptions for loop amplitudes.

6. Inverse map for N = 0 → N = 1 embedding

After twisting the ten RNS spin-half fields into five spin-zero and five spin-one fields, the

RNS superstring was mapped in the previous section into the pure spinor formalism. Since

the pure spinor formalism can be interpreted as an N = 2 topological string [3], which is a

natural generalization of bosonic strings, the map takes a critical N = 1 string into a type

of N = 0 string.

As shown with Vafa [7], any critical N = 0 string can be embedded into a critical

N = 1 string by twisting the (b, c) ghosts from spin (2,−1) to spin (3
2 ,−1

2) and defining

the N = 1 superconformal generator as G = b+jBRST. In this section, it will be shown that

if one starts with the N = 1 string corresponding to this N = 0 → N = 1 embedding of

the bosonic string and performs the map of the previous section, one recovers the original

N = 0 bosonic string.

So the map of the previous section from the RNS to the pure spinor formalism can be

interpreted as an inverse map for the N = 0 → N = 1 embedding of [7]. This interpretation

suggests there may be generalizations of the pure spinor formalism which would arise by

applying the inverse map to other types of critical N = 1 superconformal field theories.

6.1 Review of N = 0 → N = 1 embedding

In this subsection, the map of [7] from a critical N = 0 string to a critical N = 1 string

will be reviewed. Suppose one starts with a c = 26 matter system with stress tensor Tm.

Then the standard quantization as a critical N = 0 string is to introduce (b, c) ghosts of

conformal weight (2,−1) and define physical states using the N = 0 BRST operator

QN=0 =

∫
dz[cTm + bc∂c]. (6.1)

However, the same matter system can also be quantized as a critical N = 1 string by

adding a set of (b1, c1) matter fields of conformal weight (3
2 ,−1

2) so the combined system

has central charge 15. One then defines a set of critical N = 1 superconformal generators

as

TN=1 = Tm − b1∂c1 −
1

2
∂(b1c1) +

1

2
∂2(c1∂c1), (6.2)

GN=1 = c1(Tm + ∂c1b1) +
5

2
∂2c1 + b1. (6.3)

Note that GN=1 = jBRST + b1 where, up to a total derivative, jBRST is the BRST current

of (6.1) with (b, c) replaced by (b1, c1).
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One can now perform the standard N = 1 quantization by introducing fermionic (b, c)

ghosts of conformal weight (2,−1) and bosonic (β, γ) ghosts of conformal weight (3
2 ,−1

2),

and defining physical states using the N = 1 BRST operator

QN=1 =

∫
dz

[
cTN=1 + γGN=1 − γ2b+ bc∂c+ c

(
β∂γ +

1

2
∂(βγ)

)]
. (6.4)

Equivalence of the cohomologies of QN=0 of (6.1) and QN=1 of (6.4) was proven in

[21] by writing

QN=1 = eU
[ ∫

dz(cTm + bc∂c+ γb1)

]
e−U (6.5)

where

U =

∫
dzc1

(
1

2
γb− 3

2
∂cβ − c∂β +

1

2
∂c1cb−

1

4
βγ∂c1

)
.

The topological term γb1 in (6.5) implies that the N = 1 cohomology is independent of

(β, γ) and (b1, c1), so the QN=1 cohomology coincides with the QN=0 cohomology. Fur-

thermore, it was shown in [7] that the N = 1 amplitude prescription coincides with the

N = 0 amplitude prescription where the functional integral over the bosonic (β, γ) fields

cancels the functional integral over the fermionic (b1, c1) fields.

6.2 Inverse map for bosonic string

In this subsection, it will be shown that if one starts with the N = 1 string coming from

the N = 0 → N = 1 embedding of the bosonic string and performs similar steps as in the

map from the RNS to the pure spinor formalism, one ends up with the original N = 0

description of the bosonic string.

The first step is to twist the (b1, c1) matter fields from spin (3
2 ,−1

2) to (2,−1) by

defining [6]

b̃1 =
1

γ
b1, c̃1 = γc1 (6.6)

as in the twisting of the ψm matter fields in the RNS formalism. Since β has non-trivial

OPE’s with b̃1 and c̃1, it is convenient to define new fields β̃ = ∂ξ̃e−
eφ and γ̃ = η̃e

eφ where

η̃ = ηe
1

2
(φ−iσ), ξ̃ = ξe

1

2
(−φ+iσ), (6.7)

e
eφ = ηe

1

2
(3φ+iσ), e−

eφ = ξe
1

2
(−3φ−iσ),

and c1 = eiσ and b1 = e−iσ. The definitions of (6.7) are uniquely determined by the

requirements that [η̃, ξ̃, e
eφ, e−

eφ] have the same OPE’s as [η, ξ, eφ, e−φ] with each other, that

[η̃, ξ̃, e
eφ, e−

eφ] have no poles with c̃1 = ηeφ+iσ and b̃1 = ξe−φ−iσ, and that η̃ has +1 conformal

weight. One can easily verify from (6.7) that

γ̃ = η∂ηe2φ = γ2 (6.8)

carries spin −1 and β̃ carries spin 2. So the twisting of (6.6) and (6.7) has shifted the spins

of both (b1, c1) and (β, γ) from (3
2 ,−1

2) to (2,−1), and their contributions to the central

charge continue to cancel each other.
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When written in terms of (̃b1, c̃1) and (β̃, γ̃), QN=1 of (6.4) becomes

QN=1 =

∫
dz

[
cT + c̃1(Tm + ∂c̃1b̃1) + γ̃(b− b̃1) −

1

2
γ̃∂2

(
c̃1
γ̃

)
+ bc∂c

]
(6.9)

where

T = Tm +
1

2
∂2(

c̃1∂c̃1
γ̃

) − b̃1∂c̃1 − ∂(̃b1c̃1) + β̃∂γ̃ + ∂(β̃γ̃). (6.10)

To put T into the standard form for a stress tensor, one can perform the similarity

transformation Q→ eSQe−S where S = −1
2(γ̃)−1c̃1∂

2c̃1 which transforms Q into

Q =

∫
dz[c(Tm − b̃1∂c̃1 − ∂(̃b1c̃1) + β̃∂γ̃ + ∂(β̃γ̃)) + c̃1(Tm − b̃1∂c̃1) + γ̃(b− b̃1) + bc∂c]

= eR
∫
dz[c̃1(Tm + ∂c̃1b̃1) + γ̃b]e−R = eR

(
Q′

N=0 +

∫
dz γ̃b

)
e−R, (6.11)

where R =
∫
dz c(̃b1 + ∂cβ̃) and Q′

N=0 is the N = 0 BRST operator of (6.1) with (b, c)

replaced by (̃b1, c̃1).

Since γ̃b is a topological term, the twisted (β̃, γ̃) ghosts will now cancel out the contri-

bution of the (b, c) ghosts instead of the (b1, c1) matter fields. The remaining fields include

the c = 26 matter fields and the (̃b1, c̃1) matter fields of (2,−1) conformal weight, which

are treated like (b, c) ghosts in the standard N = 0 description. So this inverse map takes

the N = 1 description of the bosonic string into the N = 0 description.

7. Comparison with other approaches

In this paper, many mysterious features of the pure spinor formalism were explained by

adding a pair of non-minimal fields and performing a similarity transformation which allows

the pure spinor BRST operator to be expressed in a conventional-looking form. Although

this approach is the first one that has succeeded in describing the GSO(−) sector, there

have been several previous approaches to “explaining” the pure spinor formalism and it

will be useful to compare this paper with the other approaches.

One approach has been to relax the pure spinor constraint on the ghost variable λα and

extend the BRST operator to include additional terms which are required for nilpotence

[22 – 24] [25]. Although the conventional-looking BRST operator in this paper also includes

additional terms, the extended BRST operators generically require an infinite number of

additional terms in order to be nilpotent. It might eventually be possible to relate these

extended approaches with the approach of this paper, however, it seems to be much easier

to work with the conventional-looking BRST operator which has a finite number of terms.

Even though the conventional-looking BRST operator is not manifestly Lorentz invariant,

it is easy to show that the resulting scattering amplitudes are Lorentz invariant.

A second approach has been to derive the pure spinor formalism from a semi-light-cone

gauge-fixed version of the Green-Schwarz formalism which has double the usual number of

θ variables [26, 27]. The resulting equivalence proof with the GS formalism is certainly

related to the proof in section 4 of this paper, however, the equivalence proof in this paper

is considerably simpler and does not require the choice of semi-light-cone gauge.
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A third approach has been to interpret the pure spinor formalism as a topological

string [3] and to compute scattering amplitudes by coupling to worldsheet topological

gravity [8]. Although this approach is probably not useful for comparing with the RNS

and GS formalisms, it might eventually be useful for constructing generalizations of the

pure spinor formalism, perhaps by looking for other examples of the N = 1 → N = 0

inverse map of section 6.

Finally, a fourth approach has been to relate the pure spinor formalism with the

N = 1 → N = 2 embedding of the RNS string [11, 28]. For compactification of the

superstring on a Calabi-Yau manifold, this N = 1 → N = 2 embedding is related by a field

redefinition to the hybrid formalism [29]. And in ten dimensions, this N = 1 → N = 2

embedding is related by a field redefinition to the GS “twistor string” [28, 30, 31]. If

this fourth approach were better understood, it might lead to a proof of equivalence of the

RNS and pure spinor multiloop amplitude prescriptions. Furthermore, this approach might

allow compactifications of the pure spinor formalism to be related to the hybrid formalism.

However, there are some unresolved puzzles concerning this approach.

One puzzle is that the pure spinor formalism appears to be described by a topological

N = 2 string which has ĉ = 3, and not by a critical ĉ = 2 N = 2 string which arises

from the N = 1 → N = 2 embedding. Note that naive compactification of the pure

spinor formalism produces a ĉ = 3 N = 2 theory which, unlike the hybrid formalism, only

describes the BPS sector of the compactified superstring [3]. Also, the string field theory

action for the pure spinor formalism resembles a Chern-Simons action, as opposed to the

Wess-Zumino-Witten-like action [32] which naturally arises from the N = 1 → N = 2

embedding.

Nevertheless, as will be discussed in the following subsection, there is a version of the

N = 1 → N = 2 embedding which has many similarities with the fields appearing in the

N = 1 → N = 0 embedding and which may eventually be useful for relating the pure

spinor and hybrid formalisms. The possibility of using this version of the embedding to

relate the pure spinor and hybrid formalisms has been independently observed by Osvaldo

Chand́ıa [33].

7.1 N = 1 → N = 2 embedding

The hybrid formalism for the superstring is constructed by first embedding the RNS string

into a ĉ = 2 N = 2 string, and then finding a field redefinition which maps the RNS

variables into super-Poincaré covariant Green-Schwarz-Siegel variables [9]. The untwisted

ĉ = 2 N = 2 generators are defined in terms of the RNS fields as

T = TRNS − 1

2
∂J, G = jBRST, G = b, J = cb+ ηξ, (7.1)

where jBRST is the RNS BRST current and (ξ, η) come from fermionizing the (β, γ) ghosts

as β = ∂ξe−φ and γ = ηeφ. The field redefinition to Green-Schwarz-Siegel variables is then

defined by

θα = e
φ

2 Σα, pα = e−
φ

2 Σα (7.2)

– 22 –



J
H
E
P
0
1
(
2
0
0
8
)
0
6
5

where Σα is the RNS spin field of conformal weight 5
8 . This field redefinition can be used

for the subset of θα variables which are chosen in the +1
2 picture.

However, one can also consider the field redefinition [6]

θa ≡ ψ̃a = γψa, pa ≡ ψ̃a = (γ)−1ψa (7.3)

where a = 1 to 5, ψa = 1√
2
(ψa + iψa+5), and ψa = 1√

2
(ψa − iψa+5). This field redefinition

is related to (5.1) by a fixed choice of λα in which the only nonzero component is λ+. In

terms of θa and pa, the ĉ = 2 N = 2 generators of (7.1) are

T = −∂xa∂xa − pa∂θ
a + β̃∂γ̃ + ∂(β̃γ̃) − b∂c− ∂(bc) − 1

2
∂J, (7.4)

G = c

(
T +

1

2
∂J

)
+ bc∂c+ γ̃pa∂x

a + θa∂xa + γ̃b, (7.5)

G = b, (7.6)

J = cb+ 2β̃γ̃ + θapa, (7.7)

where xa = 1√
2
(xa+ixa+5), xa = 1√

2
(xa−ixa+5), and γ̃ = (γ)2. As in the hybrid formalism,

all variables in (7.4) are automatically GSO-projected so there is no need to sum over spin

structures.

Finally, performing the similarity transformation φ→ e−RφeR on all worldsheet fields

φ where

R =

∮
dz (cpa∂x

a + c∂cβ̃), (7.8)

one can express the N = 2 generators as [34]

T = −∂xa∂xa − pa∂θ
a + β̃∂γ̃ + ∂(β̃γ̃) − b∂c− ∂(bc) − 1

2
∂J, (7.9)

G = θa∂xa + γ̃b, (7.10)

G = −pa∂x
a + β̃∂c+ ∂(β̃c) + b, (7.11)

J = θapa + cb+ 2β̃γ̃. (7.12)

Note that the b ghost in G is not necessary for closure of the N = 2 superconformal algebra,

and if one ignores the presence of the b ghost in G, (7.9) are the standard N = 2 generators

for a set of 5 chiral and antichiral scalar superfields, (xa, θa) and (xa, pa), and a set of spin

−1 chiral and spin 2 antichiral superfields, (c, γ̃) and (β̃, b).

Since this version of the N = 1 → N = 2 embedding contains similar fields to the

N = 1 → N = 0 map to the pure spinor formalism, it may be useful for proving the

equivalence of the hybrid and pure spinor formalisms. Note that unlike the usual hybrid

formalisms defined using (7.2), the N = 2 generators of (7.9) do not involve chiral bosons.

For example, the N = 2 generators in the d = 4 hybrid formalism [29] involve a chiral

boson ρ. These chiral bosons have been an obstacle to computing multiloop amplitudes

using the hybrid formalism and it is possible this new version of the N = 1 → N = 2

embedding will be useful for computing multiloop amplitudes which can be compared with

the multiloop prescription in the pure spinor formalism.
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Furthermore, one can easily compactify this version of the embedding on a Calabi-

Yau D-fold by replacing
∑5

a=1 θ
a∂xa with

∑5−D
a=1 θ

α∂xa + GC and
∑5

a=1 pa∂x
a with∑5−D

a=1 pa∂x
a + GC where (GC , GC) are the fermionic N = 2 generators of the Calabi-

Yau D-fold. Finally, the fact that (xa, θa) and (xa, pa) appear in the N = 2 generators

of (7.9) in the same manner as they appear in topological strings suggests there may be a

close connection between this version of the N = 1 → N = 2 embedding and topological

strings.
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[1] N. Berkovits, Super-Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018

[hep-th/0001035].

[2] D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and

string theory, Nucl. Phys. B 271 (1986) 93.

[3] N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP 10 (2005) 089

[hep-th/0509120].

[4] N. Nekrasov, Lectures at the 23rd Jerusalem winter school in theoretical physics, January

(2006), online at http://www.as.huji.ac.il/schools/phys23/media2.shtml.

[5] N. Berkovits and N. Nekrasov, Multiloop superstring amplitudes from non-minimal pure

spinor formalism, JHEP 12 (2006) 029 [hep-th/0609012].

[6] L. Baulieu, Transmutation of pure 2−D supergravity into topological 2−D gravity and other

conformal theories, Phys. Lett. B 288 (1992) 59 [hep-th/9206019];

L. Baulieu, M.B. Green and E. Rabinovici, A unifying topological action for heterotic and

type-II superstring theories, Phys. Lett. B 386 (1996) 91 [hep-th/9606080];

L. Baulieu and N. Ohta, Worldsheets with extended supersymmetry, Phys. Lett. B 391 (1997)

295 [hep-th/9609207];

L. Baulieu, M.B. Green and E. Rabinovici, Superstrings from theories with N > 1 world-sheet

supersymmetry, Nucl. Phys. B 498 (1997) 119 [hep-th/9611136].

[7] N. Berkovits and C. Vafa, On the uniqueness of string theory, Mod. Phys. Lett. A 9 (1994)

653 [hep-th/9310170].

[8] J. Hoogeveen and K. Skenderis, BRST quantization of the pure spinor superstring, JHEP 11

(2007) 081 [arXiv:0710.2598].

[9] N. Berkovits, A new description of the superstring, hep-th/9604123.

[10] W. Siegel, Classical superstring mechanics, Nucl. Phys. B 263 (1986) 93.

[11] N. Berkovits, Relating the RNS and pure spinor formalisms for the superstring, JHEP 08

(2001) 026 [hep-th/0104247].

– 24 –

http://jhep.sissa.it/stdsearch?paper=04%282000%29018
http://arxiv.org/abs/hep-th/0001035
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB271%2C93
http://jhep.sissa.it/stdsearch?paper=10%282005%29089
http://arxiv.org/abs/hep-th/0509120
http://www.as.huji.ac.il/schools/phys23/media2.shtml
http://jhep.sissa.it/stdsearch?paper=12%282006%29029
http://arxiv.org/abs/hep-th/0609012
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB288%2C59
http://arxiv.org/abs/hep-th/9206019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB386%2C91
http://arxiv.org/abs/hep-th/9606080
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB391%2C295
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB391%2C295
http://arxiv.org/abs/hep-th/9609207
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB498%2C119
http://arxiv.org/abs/hep-th/9611136
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA9%2C653
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA9%2C653
http://arxiv.org/abs/hep-th/9310170
http://jhep.sissa.it/stdsearch?paper=11%282007%29081
http://jhep.sissa.it/stdsearch?paper=11%282007%29081
http://arxiv.org/abs/0710.2598
http://arxiv.org/abs/hep-th/9604123
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB263%2C93
http://jhep.sissa.it/stdsearch?paper=08%282001%29026
http://jhep.sissa.it/stdsearch?paper=08%282001%29026
http://arxiv.org/abs/hep-th/0104247


J
H
E
P
0
1
(
2
0
0
8
)
0
6
5

[12] N.A. Nekrasov, Lectures on curved beta-gamma systems, pure spinors and anomalies,

hep-th/0511008.

[13] P. Mukhopadhyay, DDF construction and D-brane boundary states in pure spinor formalism,

JHEP 05 (2006) 055 [hep-th/0512161].

[14] R. Schiappa and N. Wyllard, D-brane boundary states in the pure spinor superstring, JHEP

07 (2005) 070 [hep-th/0503123].

[15] K. Lee and W. Siegel, Simpler superstring scattering, JHEP 06 (2006) 046 [hep-th/0603218].

[16] N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism

for the superstring, JHEP 09 (2004) 047 [hep-th/0406055].

[17] L. Brink and J.H. Schwarz, Quantum superspace, Phys. Lett. B 100 (1981) 310.

[18] W. Siegel, Hidden local supersymmetry in the supersymmetric particle action, Phys. Lett. B

128 (1983) 397.

[19] M.B. Green and J.H. Schwarz, Covariant description of superstrings, Phys. Lett. B 136

(1984) 367.

[20] N. Berkovits and B.C. Vallilo, Consistency of super-Poincaré covariant superstring tree

amplitudes, JHEP 07 (2000) 015 [hep-th/0004171].

[21] H. Ishikawa and M. Kato, Note on N = 0 string as N = 1 string, Mod. Phys. Lett. A 9

(1994) 725 [hep-th/9311139].

[22] P.A. Grassi, G. Policastro, M. Porrati and P. Van Nieuwenhuizen, Covariant quantization of

superstrings without pure spinor constraints, JHEP 10 (2002) 054 [hep-th/0112162];

P.A. Grassi, G. Policastro and P. van Nieuwenhuizen, The quantum superstring as a WZNW

model, Nucl. Phys. B 676 (2004) 43 [hep-th/0307056].

[23] Y. Aisaka and Y. Kazama, A new first class algebra, homological perturbation and extension

of pure spinor formalism for superstring, JHEP 02 (2003) 017 [hep-th/0212316]; Relating

Green-Schwarz and extended pure spinor formalisms by similarity transformation, JHEP 04

(2004) 070 [hep-th/0404141].

[24] M. Chesterman, Ghost constraints and the covariant quantization of the superparticle in ten

dimensions, JHEP 02 (2004) 011 [hep-th/0212261].

[25] K. Lee and W. Siegel, Conquest of the ghost pyramid of the superstring, JHEP 08 (2005) 102

[hep-th/0506198].

[26] N. Berkovits and D.Z. Marchioro, Relating the Green-Schwarz and pure spinor formalisms for

the superstring, JHEP 01 (2005) 018 [hep-th/0412198].

[27] Y. Aisaka and Y. Kazama, Origin of pure spinor superstring, JHEP 05 (2005) 046

[hep-th/0502208].

[28] M. Matone, L. Mazzucato, I. Oda, D. Sorokin and M. Tonin, The superembedding origin of

the Berkovits pure spinor covariant quantization of superstrings, Nucl. Phys. B 639 (2002)

182 [hep-th/0206104].

[29] N. Berkovits, Covariant quantization of the Green-Schwarz superstring in a Calabi-Yau

background, Nucl. Phys. B 431 (1994) 258 [hep-th/9404162].

[30] M. Tonin, World sheet supersymmetric formulations of Green-Schwarz superstrings, Phys.

Lett. B 266 (1991) 312.

– 25 –

http://arxiv.org/abs/hep-th/0511008
http://jhep.sissa.it/stdsearch?paper=05%282006%29055
http://arxiv.org/abs/hep-th/0512161
http://jhep.sissa.it/stdsearch?paper=07%282005%29070
http://jhep.sissa.it/stdsearch?paper=07%282005%29070
http://arxiv.org/abs/hep-th/0503123
http://jhep.sissa.it/stdsearch?paper=06%282006%29046
http://arxiv.org/abs/hep-th/0603218
http://jhep.sissa.it/stdsearch?paper=09%282004%29047
http://arxiv.org/abs/hep-th/0406055
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB100%2C310
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB128%2C397
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB128%2C397
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB136%2C367
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB136%2C367
http://jhep.sissa.it/stdsearch?paper=07%282000%29015
http://arxiv.org/abs/hep-th/0004171
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA9%2C725
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA9%2C725
http://arxiv.org/abs/hep-th/9311139
http://jhep.sissa.it/stdsearch?paper=10%282002%29054
http://arxiv.org/abs/hep-th/0112162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB676%2C43
http://arxiv.org/abs/hep-th/0307056
http://jhep.sissa.it/stdsearch?paper=02%282003%29017
http://arxiv.org/abs/hep-th/0212316
http://jhep.sissa.it/stdsearch?paper=04%282004%29070
http://jhep.sissa.it/stdsearch?paper=04%282004%29070
http://arxiv.org/abs/hep-th/0404141
http://jhep.sissa.it/stdsearch?paper=02%282004%29011
http://arxiv.org/abs/hep-th/0212261
http://jhep.sissa.it/stdsearch?paper=08%282005%29102
http://arxiv.org/abs/hep-th/0506198
http://jhep.sissa.it/stdsearch?paper=01%282005%29018
http://arxiv.org/abs/hep-th/0412198
http://jhep.sissa.it/stdsearch?paper=05%282005%29046
http://arxiv.org/abs/hep-th/0502208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB639%2C182
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB639%2C182
http://arxiv.org/abs/hep-th/0206104
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB431%2C258
http://arxiv.org/abs/hep-th/9404162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB266%2C312
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB266%2C312


J
H
E
P
0
1
(
2
0
0
8
)
0
6
5

[31] N. Berkovits, The heterotic Green-Schwarz superstring on an N = (2, 0) superworldsheet,

Nucl. Phys. B 379 (1992) 96 [hep-th/9201004].
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